Now don’t tell me that whoever thought up this acronym did not know what they were doing! S.A.T.A.N - Stratospheric Aerosol Transport and Nucleation: Demonic Geoengineering – is a project by University College London researchers and European Astrotech, to launch a high-altitude weather balloon that released a few hundred grams of sulphur dioxide into the stratosphere, to test the role of low-cost, controllable, recoverable balloon system in solar engineering. The results of the research are to be published, so the details are not available, but it is but one more step on the road to manipulation of the climate.
“Last September, researchers in the UK launched a high-altitude weather balloon that released a few hundred grams of sulfur dioxide into the stratosphere, a potential scientific first in the solar geoengineering field, MIT Technology Review has learned.
Solar geoengineering is the theory that humans can ease global warming by deliberately reflecting more sunlight into space. One possible means is spraying sulfur dioxide in the stratosphere, in an effort to mimic a cooling effect that occurs in the aftermath of major volcanic eruptions. It is highly controversial given concerns about potential unintended consequences, among other issues.
The UK effort was not a test of or experiment in geoengineering itself. Rather, the stated goal was to evaluate a low-cost, controllable, recoverable balloon system, according to details obtained by MIT Technology Review. Such a system could be used for small-scale geoengineering research efforts, or perhaps for an eventual distributed geoengineering deployment involving numerous balloons.
The “Stratospheric Aerosol Transport and Nucleation,” or SATAN, balloon systems were made from stock and hobbyist components, with hardware costs that ran less than $1,000.
Andrew Lockley, an independent researcher previously affiliated with University College London, led the effort last fall, working with European Astrotech, a company that does engineering and design work for high-altitude balloons and space propulsion systems.
They have submitted a paper detailing the results of the effort to a journal, but it has not yet been published. Lockley largely declined to discuss the matter ahead of publication, but he did express frustration that the scientific process was being circumvented.
“Leakers be damned!” he wrote in an email to MIT Technology Review. “I’ve tried to follow the straight and narrow path and wait for the judgment day of peer review, but it appears a colleague has been led astray by diabolical temptation.”
“There’s a special place in hell for those who leak their colleagues’ work, tormented by ever burning sulfur,” he added. “But I have taken a vow of silence, and can only confirm that our craft ascended to the heavens, as intended. I only hope that this test plays a small part in offering mankind salvation from the hellish inferno of climate change.”
European Astrotech didn’t immediately respond to an inquiry.
Test flights
The system included a lofting balloon filled with helium or hydrogen, which carried along a basketball-size payload balloon that contained some amount of sulfur dioxide. An earlier flight in October 2021 likely also released a trace amount of the gas in the stratosphere, although that could not be confirmed and the system was not recovered owing to a problem with onboard instruments, according to details obtained by MIT Technology Review.
During the second flight, in September of 2022, the smaller payload balloon burst about 15 miles above Earth as it expanded amid declining atmospheric pressure, releasing around 400 grams of the gas into the stratosphere. That may be the first time that a measured gas payload was verifiably released in the stratosphere as part of a geoengineering-related effort. Both balloons were released from a launch site in Buckinghamshire, in southeast England.
There have, however, been other attempts to place sulfur dioxide in the stratosphere. Last April, the cofounder of a company called Make Sunsets says, he attempted to release it during a pair of rudimentary balloon flights from Mexico, as MIT Technology Review previously reported late last year. Whether it succeeded is also unclear, as the aircraft didn’t include equipment that could confirm where the balloons burst, said Luke Iseman, the chief executive of the startup.
The Make Sunsets effort was widely denounced by researchers in geoengineering, critics of the field, and the government of Mexico, which announced plans to prohibit and even halt any solar geoengineering experiments within the country. Among other issues, observers were concerned that the launches had moved ahead without prior notice or approval, and because the company ultimately seeks to monetize such launches by selling “cooling credits.”
Lockley’s experiment was distinct in a variety of ways. It wasn’t a commercial enterprise. The balloons were equipped with instruments that could track flight paths and monitor environmental conditions. They also included a number of safety features designed to prevent the balloons from landing while still filled with potentially dangerous gases. In addition, the group obtained flight permits and submitted what’s known as a “notice to airmen” to aviation authorities, which ensure that aircraft pilots are aware of flight plans in the area.”